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Amphioxus muscle transcriptomes 
reveal vertebrate-like myoblast fusion genes 
and a highly conserved role of insulin signalling 
in the metabolism of muscle
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Abstract 

Background:  The formation and functioning of muscles are fundamental aspects of animal biology, and the evolu‑
tion of ‘muscle genes’ is central to our understanding of this tissue. Feeding-fasting-refeeding experiments have been 
widely used to assess muscle cellular and metabolic responses to nutrition. Though these studies have focused on 
vertebrate models and only a few invertebrate systems, they have found similar processes are involved in muscle 
degradation and maintenance. Motivation for these studies stems from interest in diseases whose pathologies involve 
muscle atrophy, a symptom also triggered by fasting, as well as commercial interest in the muscle mass of animals 
kept for consumption. Experimentally modelling atrophy by manipulating nutritional state causes muscle mass to 
be depleted during starvation and replenished with refeeding so that the genetic mechanisms controlling muscle 
growth and degradation can be understood.

Results:  Using amphioxus, the earliest branching chordate lineage, we address the gap in previous work stemming 
from comparisons between distantly related vertebrate and invertebrate models. Our amphioxus feeding-fasting-
refeeding muscle transcriptomes reveal a highly conserved myogenic program and that the pro-orthologues of many 
vertebrate myoblast fusion genes were present in the ancestral chordate, despite these invertebrate chordates having 
unfused mononucleate myocytes. We found that genes differentially expressed between fed and fasted amphioxus 
were orthologous to the genes that respond to nutritional state in vertebrates. This response is driven in a large part 
by the highly conserved IGF/Akt/FOXO pathway, where depleted nutrient levels result in activation of FOXO, a tran‑
scription factor with many autophagy-related gene targets.

Conclusion:  Reconstruction of these gene networks and pathways in amphioxus muscle provides a key point of 
comparison between the distantly related groups assessed thus far, significantly refining the reconstruction of the 
ancestral state for chordate myoblast fusion genes and identifying the extensive role of duplicated genes in the IGF/
Akt/FOXO pathway across animals. Our study elucidates the evolutionary trajectory of muscle genes as they relate to 
the increased complexity of vertebrate muscles and muscle development.
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Introduction
Regulating metabolic rate in response to energy availabil-
ity is a complex and essential aspect of survival. In many 
animals, a major source of energy is muscle, the degra-
dation, maintenance, or growth of which is determined 
by the balance of cellular anabolism and catabolism. A 
period of low nutrient availability, i.e., fasting, causes 
muscles to be broken down by autophagy, where struc-
tural proteins are disassembled for their components. 
This process can also occur in several diseases [9, 137], 
and as a symptom of ageing [39]. Onset of this process 
involves nutrition-sensitive signalling pathways and 
results in changes in expression of autophagy or muscle 
growth genes [5]. While this general mechanism appears 
to be shared amongst most animals, there are important 
distinctions between the muscle physiology of verte-
brates and certain invertebrates.

Vertebrate skeletal muscles consist of multiple fibres 
of multinucleate striated myotubes, full of actin-myosin 
cytoskeletal fibrils that constitute the primary protein 
reservoir in the body. While it has been found that some 
arthropods also form multinucleate cells [1, 25, 122], 
many other invertebrates have been found with only 
mononucleate muscle cells, including cnidarians [109], 
nematodes [82], annelids [100, 130], molluscs [44, 59, 89], 
and the invertebrate chordates amphioxus [31]. Interest-
ingly, members of the other invertebrate chordate line-
age, tunicates, have been found to have multinucleate 
muscle cells in the adult body wall musculature, which 
arise via myoblast fusion [102].

Myoblast fusion is a process integral to the formation 
of multinucleate muscle fibres, but has only thoroughly 
been investigated in a few species, primarily flies, mice, 
and zebrafish [1, 103]. This process requires cells to 
migrate, recognise, and adhere to one another before they 
can fuse, and is therefore a complex multi-step molecular 
mechanism. In vertebrates, myoblasts fuse into nascent 
myotubes in the first phase of fusion, then myotubes fuse 
together in the second phase [47], resulting in myofibres 
containing hundreds or thousands of nuclei. In flies, mus-
cles are composed of single myotubes that grow from the 
initial asymmetric fusion of a fusion-competent myocyte 
(FCM) expressing membrane signals with a founder cell 
expressing the corresponding membrane receptors [122].

Sns (Sticks and stones) [11] and Hbs (Hibris) [4, 28, 
110] in FCMs bind to Duf (Dumfounded a.k.a. Kirre 
(Kin of Irregular-chiasm-C)) [105] and Rst (Roughest 
a.k.a. IrreC (Irregular-chiasm-C)) [119] in the founder 
cell. This process is remarkably conserved between 
flies and vertebrates [116], where the Sns/Hbs ortho-
logue Nephrin is required for myoblast fusion [113], 
and this binds to the Duf/Rst vertebrate orthologues 
Kirrel1, Kirrel2, and Kirrel3 (a.k.a. Neph1, Neph2, 

Neph3) [27]. At the site of fusion, the Arf-GEF Schizo 
(a.k.a. loner) removes N-cadherin from the membrane 
to allow for fusion between the growing myotube and 
FCMs in Drosophila [26], and the vertebrate ortho-
logues Brag2 and Cadherin-15 (M-Cadherin) play 
similar roles [19, 21]. These interactions trigger the 
intracellular response, mediated by Dock1/Dock5 and 
its adaptor proteins Crk and Crkl in vertebrates, and in 
Drosophila, where its Dock orthologue Mbc also binds 
Crk [29, 83, 103]. Then, Dock/Crk activates Arf6 and 
Rac [19], which use the scar/WAVE complex to activate 
the Arp2/3 complex that can induce the actin remod-
elling required for fusion [6, 73]. This process is again 
orthologous in vertebrates (WASP/WAVE; ARP2/3), 
though the components of these complexes have not 
been characterised as fully as in flies [40].

Because the genetics of myoblast fusion were originally 
characterised in fly models, there are several genes identi-
fied in flies for which vertebrate orthologues do not exist, 
whose functions have not been identified, or have been 
identified with functions unrelated to myoblast fusion. 
The gene blown fuse, the protein of which regulates the 
stability of the scar/Wave complex and its role in actin 
regulation, has only been found in flies [50, 108]. The 
protein of the fly gene rolling pebbles (a.k.a. Anti-social) 
links the signal from Duf/Rst to Mbc, but its vertebrate 
orthologues TANC1 and TANC2 have only been found 
in neurons [120]. The above similarities, and these differ-
ences described here reflect an established approach to 
understand myoblast fusion by identifying whether ver-
tebrate orthologues of fly fusion genes have a role in ver-
tebrate myoblasts.

Vertebrate-centred approaches to understanding the 
molecules involved in myoblast fusion have searched 
for genes expressed along with known muscle genes like 
the Myogenic Regulatory Factors (MRFs), which identi-
fied the transmembrane protein Myomaker (MymK, 
a.k.a. Tmem8c) in mice [79] and zebrafish [62]. MymK 
is shared between invertebrate urochordates and ver-
tebrates (known together as Olfactores), is expressed in 
myoblasts, and is essential for fusion [144]. Its partner, 
Myomixer (MymX) is specific to the vertebrates, and the 
combinatorial action of these two proteins may under-
pin the higher rate of myoblast fusion in vertebrates [8, 
145]. Vertebrate cell culture experiments found Neogenin 
and Netrin to be expressed in myoblasts, and determined 
their essential role in regulating myotube formation [54], 
though these genes were first identified in the vertebrate 
nervous system, and the function of their fly orthologues 
(Frazzled and NetA) has only been reported for the nerv-
ous system and eye development [2, 81]. Other studies 
have found candidates through querying extracellular 
protein interaction databases for muscle genes, which 
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identified Jam-B and Jam-C [97]. Neither of these have 
been found to have orthologues in flies.

Studies in vertebrates and flies have shown that simi-
lar mechanisms work to regulate the cellular response to 
nutrition in muscles [15]. Insulin Growth Factor (IGF) 
signalling is a major controller of skeletal muscle size in 
vertebrates [37, 92], and represents the direct relation-
ship of nutrient availability to muscle maintenance. IGF 
mediates the signal from Growth hormone (Gh) to enact 
the changes observed in muscle cells. Muscle hypertro-
phy can be induced by Gh, resulting in increased myo-
blast fusion and myofibre size [115], and IGF-1, which 
results in increased protein synthesis and a downregu-
lation of muscle-specific ubiquitin ligases [37]. The rela-
tionship of IGF and its downstream pathway in muscle 
growth or degradation has been determined in mice [78, 
84, 106], fish [12, 20, 34], chicken [86], and the inverte-
brate models fruit fly [36, 124], nematode [94], oyster 
[51] and hydroid [72] responding to nutritional state.

In muscle, this pathway carries the signal of nutrient 
availability through a series of kinases resulting in the 
suppression of FOXO transcription factors, which regu-
late genes for the autophagic process. In times of low 
nutrient availability, i.e., fasting, FOXO transcription fac-
tors are not phosphorylated, and can enter the nucleus to 
activate their target genes. In starved mice, the ratio of 
phosphorylated to unphosphorylated FOXO decreases, 
as it is disinhibited by the upstream INS/Akt signalling 
[106]. FOXO transcription factors regulate proteolysis in 
a variety of ways in muscle cells, stimulating both lysoso-
mal and proteasomal proteolysis [69, 114, 118, 146]. The 
primary muscle autophagy-related targets of FOXO tran-
scription factors are the E3 ubiquitin ligases MAFbx and 
MuRF1, which are upregulated by FOXO in starved mus-
cle and their proteins target muscle genes for degrada-
tion [32, 106]. Other FOXO targets are varied [131], and 
include LC3b, Gabarapl1, Vps34, Ulk2, Atg12l, Atg4b, 
and Beclin1 [136, 146]. In mice, FOXO transcription fac-
tors regulate a group of E3-ubiquitin ligases including 
Fbxo30 (MUSA1), Fbxo31, Fbxo21, and Itch, as well as 
proteasome subunits, ubiquitin and related genes, and 
markers of the autophagosome, e.g. LC3 [78]. FOXO 
orthologues activate orthologous targets in vertebrates, 
flies, and nematodes [24, 75, 77, 85, 98, 99, 121, 131], 
suggesting a conserved repertoire of autophagy genes 
regulated by FOXO transcription factors. Across these 
animals, key players in the nutrition-response pathways 
are repeatedly triggered, illustrating the highly conserved 
nature of this pathway.

Other signalling pathways are also triggered in feed-
ing-fasting experiments, including the Ras/Raf/MAPK 
pathway and mTOR downstream of Akt [74]. Both of 
these pathways are highly conserved. In the case of 

MAPK, EGF levels result in activation of the bHLHZ 
transcription factor MYC [70], while mTOR is involved 
in growth and transcription downstream of insulin/IGF 
signalling [17]. Both of these pathways show a similar 
pattern of increasing complexity in vertebrates (MAPK 
[7]; mTOR [90]). This is not unexpected, as the ancestor 
to vertebrates underwent two rounds of whole genome 
duplication (2R WGD), which has been credited with 
the evolution of more complex body plans and the 
many vertebrate novelties that arose at this time [16, 
46].

From an evolutionary standpoint, the limited number 
of invertebrate models studied in the IGF/Akt/FOXO 
context means that we are only able to tentatively infer 
a pattern of increasing complexity moving from inver-
tebrate to vertebrate animals. It has been noted that in 
such a highly conserved pathway in cnidarian, fly, nema-
tode, and vertebrate models [72, 93], that the vertebrates 
have more genes for many of the proteins in the pathway 
[123]. For instance, vertebrates have four FOXO tran-
scription factors, corresponding to only single genes in 
the urchin [129], tunicate [139], amphioxus [134, 141], fly 
[52], and nematode [91]. FOXO targets also show redun-
dancy among the vertebrates, including three paral-
ogues of MuRF1 (a.k.a. TRIM63): TRIM54, TRIM55, and 
TRIM101 [10, 68, 132], and three paralogues of MAFbx 
(a.k.a. FBXO32): FBXO25, FBXO30, and FBXO40 [22, 49, 
107, 140]. The one-to-four ratio of invertebrate to verte-
brate FOXO genes illustrates how 2R may have played 
a major role in the increasing complexity at the inverte-
brate to vertebrate transition, though a more thorough 
analysis is required.

The current understanding of the relationships 
amongst the insulin/IGF parts of the pathway and the 
role of gene duplications at the origin of vertebrates is 
even less clear. Non-teleost vertebrates have up to two 
insulin and two IGF genes, compared to one or two ILPs 
(insulin like peptides) in some invertebrates [63, 76], 
though insects have undergone their own lineage-specific 
expansion of ILPs [3, 38, 87] as has the nematode [96] 
and the oyster [65]. In this case, the increased number of 
INS/IGF genes in vertebrates relative to the single pre-
sumed ancestral invertebrate gene is obscured. Including 
other invertebrate lineages without unique expansions in 
this gene family may show the pattern between ancestral 
invertebrate orthologues and possible vertebrate paral-
ogues more clearly. A similar study determined the com-
plement of MAPK genes in amphioxus [7], noting that 
while the pathway was highly conserved between amphi-
oxus and vertebrates, the 2R WGD resulted in several 
paralogues of many of the kinases in vertebrates corre-
sponding to a single amphioxus gene. This points to the 
role of 2R in increasing complexity at the invertebrate to 
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vertebrate transition, and therefore a similar pattern may 
be expected for the amphioxus IGF/Akt/FOXO pathway.

Little is known about the IGF/Akt/FOXO pathway in 
amphioxus. Some studies have identified the amphioxus 
insulin and insulin-like peptides, as genes in this fam-
ily have been widely studied, and orthologues have been 
found from across metazoans, as discussed above [18]. 
Amphioxus has one insulin-like peptide (ILP) and one 
IGF gene [41, 48, 63]. Forkhead box genes have also been 
identified in B. floridae, which has one FOXO orthologue 
[141]. While these studies suggest that a few steps in the 
IGF/Akt/FOXO pathway are intact and conserved in 
function in amphioxus, orthologues of genes for proteins 
making up the rest of the pathway, as well as the FOXO-
controlled atrogenes and their regulation in response to 
nutrition, are yet to be identified.

Here we focus on the invertebrate chordate amphioxus 
(Branchiostoma lanceolatum) as it provides an excel-
lent point of comparison to bridge the gap between the 
invertebrates and vertebrates for which key components 
of myogenesis have been established, including myo-
blast fusion genes and the IGF/Akt/FOXO pathway. Our 
amphioxus muscle transcriptomes reveal that many myo-
blast fusion genes are present and expressed in amphi-
oxus muscles, and that amphioxus has orthologues of the 
myoblast fusion genes that were previously thought to be 
vertebrate-specific. We also found that nutritionally chal-
lenged amphioxus muscles respond in similar ways to 
commonly studied vertebrate and fly model organisms, in 
agreement with the high level of conservation of the IGF/
Akt/FOXO pathway controlling this response. We also 
reconstructed the complete amphioxus IGF/Akt/FOXO 
pathway, many of the genes of which illustrate the effect 
of the 2R WGD on the increased complexity of the verte-
brates. This work provides many candidate genes for fur-
ther studies in amphioxus and other key lineages to fully 
understand the evolution of muscle development.

Results and discussion
Clarification of the ancestral chordate myoblast fusion 
gene complement
We first generated a transcriptome of B. lanceolatum 
muscle, stimulating gene expression with nutritional 
challenge, which resulted in 355,725 reads assembled into 
14,854 isotigs, 7556 of which were annotated, and were 
joined into 7352 isogroups, finally representing 4022 
annotated genes (see Materials and methods; Additional 
file  1). We then searched this transcriptome to identify 
amphioxus orthologues of genes known to be expressed 
in muscles of other species. Within our transcriptome, we 
found orthologues of many genes characteristic of verte-
brate muscles and myogenesis. In particular, with respect 
to genes involved in myoblast fusion, we found that 

orthologues of myogenic genes in vertebrates are pre-
sent in amphioxus and many are expressed in the muscle 
transcriptome (Table  1). This includes what were previ-
ously thought to be the vertebrate-specific muscle genes, 
Jam-B and Jam-C (amphioxus orthologue BL01782). 
Also expressed in muscle are Netrin (amphioxus ortho-
logue BL15668) and its receptor Neogenin (amphioxus 
orthologue BL15756), which are required for vertebrate 
myoblast fusion, but in Drosophila, their functions have 
until now only been reported in neurons. A similar pat-
tern is observed for the transcription factor NFAT 
(BL23062), expressed in amphioxus muscles, the verte-
brate orthologue of which, NFATC2, regulates myoblast 
fusion, but where the fly gene has not been characterised 
with a function in myoblast fusion. Like vertebrates, no 
orthologue of the fly gene Blown fuse was found in the 
amphioxus genome or transcriptome. Besides these lin-
eage-specific genes, amphioxus has orthologues of all 
the components of myoblast fusion genes that are shared 
between flies and vertebrates (Table 1). While amphioxus 
lacks multinucleate myofibres, its muscles still express 
many of the genes that control fusion in the muscles of 
other species.

Because of the several lineages which diverged between 
flies and vertebrates in which only mononucleate, pre-
sumably unfused myocytes have been detected, including 
amphioxus, it is likely the two mechanisms of myoblast 
fusion arose convergently (Supplementary Fig.  1, Addi-
tional file  1). Initially the considerable conservation of 
the genetics of myoblast fusion between fly and verte-
brate models was of interest to many and some suggested 
it could reflect two states derived from a shared ances-
tral mechanism [116]. With further work, the differences 
between fly myoblast fusion, occurring asymmetrically 
between a founder cell and FCMs resulting in myotubes 
with as many as a dozen nuclei, compared to fusion in 
vertebrates where similar myoblasts fuse to form, then 
fuse with, nascent myotubes resulting in myofibres with 
hundreds of nuclei, as well as the dependence on pro-
teins thought to be novel to urochordates or vertebrates 
(e.g., MymK, MymX, JamB/C) suggest convergence [1]. 
Indeed, initial hypotheses of a single origin may have 
been misled by the fly-centred approach. While the ori-
gins of MymK and MymX have been traced to the base 
of the urochordates, the invertebrate chordate amphi-
oxus is a more suitable outgroup to address the origin of 
vertebrate myoblast fusion, as it does not have multinu-
cleate muscle cells, but is more closely related to verte-
brates than flies, especially as vertebrate myoblast fusion 
is triggered not only in development, but also in muscle 
growth and regeneration. We now show that the Jam-
B/C genes were in fact already present in the last com-
mon ancestor of chordates and expressed in muscles, as 
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Table 1  Human genes involved in myoblast fusion and their fly and amphioxus orthologues, many of which were detected in the 
amphioxus muscle transcriptome, and one of which was differentially expressed. P in parentheses denotes paralogues not involved 
directly in myoblast fusion in humans. A larger table including descriptions of their relevant functions can be found in Additional file 1

Process Human gene Fly gene Amphioxus 
orthologues

Expressed in muscle Differentially 
expressed

Myoblast fusion Cell recognition Nephrin (NPHS1) (P: 
NPHS2)

sns (Sticks and stones) 
& hbs (Hibris)

NPHS –

Kirrel1, Kirrel2, Kirrel3 duf (Dumfounded) & rst 
(Roughest)

Kirrel –

Myomaker (TMEM8C) 
(P: TMEM8A & TMEM8B)

CG13654 Tmem8a/b/c yes –

Myomixer – – –

TANC1, TANC2 rols (Rolling pebbles, 
a.k.a. Anti-social)

TANC –

Junctional adhesional 
molecule 2 (JamB) & 3 
(JamC) (P: JamA)

– JAM –

Netrin netA (Netrin-A) NTN1 yes –

Neogenin fra (Frazzled) Neo yes –

Cell adhesion Cadherin-2 (M-cad‑
herin)

– Cdh15 yes –

Cadherin-15 (N-cad‑
herin)

CadN (Cadherin_N)

Caveolin1, Caveolin2, 
Caveolin3

Caveolin-1 Cav1/3 yes –

Myoferlin (a.k.a. Fer1L3) 
(P: Dysferlin Fer1L1, 
Fer1L5)

mfr (Misfire) Myof yes –

Integrin b1 (P: Integrin 
b3)

mys (Myospheriod) ItgB1/3 yes –

Integrin a1, a3, a4, a5, 
a6, a7, a9, and av

if (Inflated) ITGA4, ITGA5, ITGA6 yes –

Protein tyrosine kinase 
2 (PTK2)

fak (Focal adhesion 
kinase)

Fak

Cell signalling Brag2 (IQSEC) siz (Schizo, a.k.a. loner) IQSEC yes –

ADP-ribosylation factor 
6 (P: ARF1, 3, 4, & 5)

Arf51F (ADP ribosyla‑
tion factor at 51F; Arf6)

Arf6 yes –

Dock1, Dock5 mbc (Myoblast city) Dock1/5 –

Crk, Crkl Crk (Crk oncogene) Crk yes –

Elmod1, Elmod2, 
Elmod3

Ced-12 (ELMO) ELMOD –

Rac1 (P: Rac2, Rac3) Rac1, Rac2 Rac yes –

Actin dynamics – blow (Blown fuse) – –

N-WASP (P:WASP) WASp WASP yes –

WIPF Wip (Vrp/Sltr) WIPF –

CYFIP1, CYFIP2 Sra-1 CYFIP –

Nck-associated 
protein1 Nckap1 (P: 
Nckap1L)

hem (a.k.a. kette) NCKAP –

WASF1 (WASP family 
member 1) (P: WASF2, 
WASF3)

scar (Suppressor of 
cAMP Receptor)

WASF yes –

ABI2 abi ABI –

Brk1 HSPC300 – –

Arpc1a, Arpc1b ArpC Arp1 yes –

Arp2, Apr3, Arp4, Arp5 Arp66B Arp2, Arp3, Arp4, Arp5 yes, all but Arp4 –
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were the Netrin and Neogenin, and NFAT genes. Thus, 
the presence of a more vertebrate-like myogenic gene 
profile in the amphioxus muscles provides a more accu-
rate proxy for the ancestral state of chordate muscles and 
the invertebrate precursor to the vertebrates than has 
thus far been obtained from study of more conventional 
(but phylogenetically more distant) model species, like D. 
melanogaster.

Expected functions for genes differentially expressed 
in feeding‑fasting experiment
We then undertook a more targeted feeding-fasting-
refeeding experiment of B. lanceolatum (see Materials 
and methods) and mapped the reads from amphioxus 
muscles sampled in each condition against our initial 
transcriptome for assembly and annotation. From our 
differential gene expression analysis, we found that 795 
RNA isotigs were significantly differentially expressed 
between the three different treatment conditions 
(Fig. 1). There is a greater difference in gene expression 
between the fed state and fasted or refed states, sug-
gesting that amphioxus may not have fully recovered 
after the final week of refeeding, especially as the fast-
ing treatment took six weeks (see Materials and meth-
ods). The first principal component of the differential 
gene expression comprises 25% of the variance between 
the subjects, and clearly separates the fed treatment 
group from the fasted and refed groups along the 
x-axis of the PCA (Fig. 1B). This is also apparent from 
the triangle plot of the isotigs, where there appears to 
be a cluster of differentially expressed isotigs towards 
the ‘Fed’ vertex opposing a spread-out line distrib-
uted between ‘Fasted’ and ‘Refed’ at the bottom of the 

triangle (Fig.  1A). Despite the lengthy time it took for 
amphioxus to be deemed to be fasted due to prolonged 
retention of food in their gastrointestinal tract, as well 
as the potential weak recovery in gene expression, we 
still observe differential expression of many informative 
amphioxus genes.

The 795 differentially expressed isotigs correspond to 
a total of 401 human orthologues used for Gene Ontol-
ogy (GO) annotation (Fig.  1C; 1D). These isotigs were 
aligned to the B. lanceolatum genome and annotated 
by comparison to known gene models. Human ortho-
logues of these genes were used for functional annota-
tion. Many of the isotigs mapped to intronic regions 
of the amphioxus genome, suggesting these could rep-
resent unspliced mRNAs or unannotated isoforms of 
gene models. In vertebrates, as quiescent muscle stem 
cells quickly differentiate during regeneration, this pro-
cess is driven in part by the splicing of unprocessed 
mRNAs built up in the nucleus [142]. We detected 
that Dek (BL16094), the regulator of intron process-
ing in this context, was expressed in our transcriptome, 
as well as some other genes involved in splicing (e.g., 
NCBP2: BL14925 and SNRPG: BL56599), but no ortho-
logues of the markers of quiescence or proliferation 
were expressed. While this is potentially indicative of a 
splicing process involved in amphioxus muscle rebuild-
ing and differentiation, it could also be an artefact of the 
incomplete gene models created by automatic annota-
tion (e.g., FOXO is annotated as two separate genes, 
BL30356 and BL15802). The comparison of BLAT map-
ping coordinates against incomplete gene model loca-
tions, or gene models that do not represent all isoforms 
of a gene, would incorrectly yield intronic matches.

Table 1  (continued)

Process Human gene Fly gene Amphioxus 
orthologues

Expressed in muscle Differentially 
expressed

Regulation Nuclear factor of acti‑
vated T-cells cytoplas‑
mic 2 (P: NFATC1, 3, 4, & 
NFAT5)

NFAT (NFAT nuclear 
factor)

Nfatc yes –

Myocyte-specific 
enhancer factor 2A (P: 
MEF2B, C, & D)

Mef2 Mef2 yes yes

Myogenic Differen‑
tiation 1, Myogenin, 
Myogenic factor 5, & 
Myf 6

Nau (Nautilus) MRF1, MRF2a, MRF2b, 
MRF3, & MRF4

yes, all but MRF4 –

Paired box 3 & 7 (P: 2, 4, 
5, 6, 8, 9)

prd (paired) Pax3/7a, Pax3/7b yes –

SIX homeobox 1 & 4 (P: 
2, 3, 5, & 6)

sine oculis, Optix, Six4 Six1/2, Six3/6, & Six4/5 yes, Six1/2 & Six4/5 –
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Fig. 1  A Triangle plot of significantly (DESeq2: p < 0.1) DEGs (black circles) and non-DEGs (grey dots). Position denotes relative proportion of total 
expression between the three conditions so that genes upregulated in fed amphioxus are located towards the ‘Fed’ point of the triangle. B PCA 
plot with first and second primary components of variance of significantly DEGs (n = 795) separates the three treatment groups (shapes), without 
separating the two trials (colour). Each of the four individuals in a treatment group is labelled A, B, C, or D. C Number of genes and number of 
isotigs corresponding to that gene (in parentheses) significantly up- or down- regulated in three comparisons. Up-regulated from fed to fasted 
means significantly more reads were detected in the fasted amphioxus than in fed for that isotig. For some genes, some isotigs were up-regulated 
while others were down-regulated, hence a lower total number of genes than the sum of each direction. D Number of the significantly up- or 
down-regulated genes assigned to GO biological processes by WebGestalt analysis in the three comparisons
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The GO gene set overrepresentation analysis shows 
that many of these genes are involved in autophagy (e.g. 
GO:0061919 process utilizing autophagic mechanism, 
GO:0052547 regulation of peptidase activity) as well as 
processes specific to muscles (e.g. GO:0031032 actomy-
osin structure organization, GO:0007517 muscle organ 
development, GO:0042692 muscle cell differentiation, 
GO:0014812 muscle cell migration). Other processes 
include metabolic responses (e.g. GO0006091 genera-
tion of precursor metabolites and energy, GO:0072350 
tricarboxylic acid metabolic process), and signalling 
(GO:0043254 regulation of protein complex assembly, 
GO:0042326 negative regulation of phosphorylation, 
GO:0072331 signal transduction by p53 class media-
tor). These correspond to cellular components includ-
ing the autophagosome (GO:0005776), endolysosome 
(GO:0036019, and GO:0031904 endolysosome lumen) 
as well as the structural component of muscle cells (e.g. 
GO0015629 actin cytoskeleton, GO0043292 contractile 
fiber). From our transcriptomic data, we see that the dif-
ferentially expressed amphioxus genes are involved in 
similar processes observed in starved and refed verte-
brate models, as expected.

Unexpectedly, several processes involved with neuro-
genesis were also overrepresented in the differentially 
expressed genes downregulated in fasted amphioxus 
(GO:0016358 dendrite development, GO:0050769 posi-
tive regulation of neurogenesis, GO:0010975 regulation 
of neuron projection development). In the fasted to refed 
comparison, neurogenic processes were upregulated 
(GO:0097485 neuron projection guidance, GO:0106030 
neuron projection fasciculation) and from fed to refed, 
negative regulation of nervous system development is 
downregulated (GO:0051961) while neuron projec-
tion guidance is upregulated (GO:0097485). This indi-
cates either that the neurogenic process is involved in 
amphioxus muscle growth, or that the two processes 
are regulated or conducted by similar mechanisms. 
This could also be artefactual, as the neurogenesis and 
neuron projection gene sets contain nearly 500 human 
genes (GO:0050769 has 447 genes; GO:0010975 has 475 
genes), many of which overlap between the two sets. 
Our gene set contained twelve genes from GO:0050769, 
ten of which were also assigned to GO:0010975, and 
ten of the genes in either GO:0050769 or GO:0010975 
were in GO:0031346 (positive regulation of cell pro-
jection organisation), indicating they may not have a 
function specific to neurogenesis. There is some signal, 
however, of a few neuron-specific genes being differ-
entially expressed. Three genes involved in the cellular 
component GO:0031594 (neuromuscular junction), one 
of which is not found in any other GO category here 
(DLGAP4), while the other two are present in other 

categories including GO:0051668 (localisation within 
membrane; STX1B & LRP4). Amphioxus myogenesis 
undergoes a unique form of innervation during mus-
cle growth, whereby nerve attachments form from the 
myotomal muscle fibres and grow to connect with the 
neural tube [  147. , 148]. While the physiology of this 
process is somewhat understood, its genetic basis is still 
unknown. Perhaps a neurogenic program homologous 
to that of vertebrates is triggered in amphioxus myogen-
esis, despite differences in the process and physiology of 
muscle rebuilding between vertebrates and amphioxus. 
Also, some of the genes involved in myoblast fusion in 
only flies or vertebrates are found expressed in neurons, 
e.g., netA and fra in flies [81], and TANC1 and TANC2 in 
vertebrates [120], indicating there may be some overlap 
between neuron membrane proteins and the source of 
proteins co-opted into myoblast fusion.

Future work could determine if and how neurogenic 
protrusions in amphioxus occur during muscle develop-
ment and growth.

KEGG pathways [55–57] which were overrepresented 
in our gene set included multiple signalling pathways, 
particularly the FOXO and Insulin signalling pathways 
(hsa04068 and hsa04910). FOXO itself was significantly 
differentially expressed between our treatments, as well 
as several of its known gene targets (Fig.  2E). BL08769 
(TRIM54/55/63) is the amphioxus orthologue of the 
E3-ubiquitin ligases TRIM55, Murf1, and Murf2, which 
are upregulated in muscle atrophy and target myo-
sin light chain components and troponin I [132, 149–
151]. Legumain is an endopeptidase associated with 
the lysosome, regulated by FOXO [  152. ]. The amphi-
oxus PINK1 orthologue, BL19549, regulates the cellular 
response to oxidative stress when activated by FOXO 
(Mei et al., 2009). Other FOXO targets appear to be dif-
ferentially expressed, though this difference was not sta-
tistically significant (Fig.  2E). Though there seem to be 
large differences in expression between the experimental 
states, these differences are not significant because of the 
lower overall read counts, fewer contigs for each gene, 
and less even expression between contigs (Fig. 2E, legend; 
Additional file 2). MAP1LC3a and MAP1LC3c (ortholo-
gous to yeast Atg8) have a role in the formation of the 
autophagosome [  153. ,  136]. ULK2 is involved in the 
initiation of autophagy [136], and FBXO30 is a paralogue 
of FBXO32, FBXO25 and FBXO40, all of which are E3 
ubiquitin ligases related to atrogin-1. All of these genes 
play important roles in the regulation of autophagy and 
show changing levels of expression in line with elevated 
levels of FOXO expression and inferred activation of its 
target genes. This suggests that the homologous FOXO 
targets shared between vertebrates and flies may also 
be FOXO-regulated in amphioxus. This also illustrates 
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the larger difference between the fed state, with lower 
FOXO expression, and both the fasted and refed states, 
with higher FOXO expression. In our refed animals, 
FOXO has nearly as high expression as in fasted animals, 
though this pattern could be further investigated with 
more robust quantitative methods. Still, this, coupled 
with the processes, components, and functions that were 
overrepresented in our gene set, shows the expected cel-
lular response to starvation and indicates that amphioxus 
is responding similarly to the previously studied animal 
models, just at much slower rates, which is presumably 
due to a lower rate of metabolism and less active lifestyle 
than species such as flies and vertebrates. The observed 
response included the inactivation of the FOXO path-
way, presumably allowing unphosphorylated FOXO to 
initiate the expression of its target genes for autophagy 
and muscle degradation, some of which we detected to 
be differentially expressed in line with FOXO’s detected 
expression. Further experiments could confirm the con-
served role of FOXO in amphioxus but our findings here 
at least suggest that amphioxus would make an informa-
tive comparative model to understand the evolution of 
the genetics of chordate muscle metabolism.

The Ins/Akt/FOXO pathway is highly conserved amid gene 
duplications in several lineages
Our analysis of the FOXO pathway in amphioxus and 
selected metazoans shows that the genes for compo-
nents of the pathway are highly conserved (Fig. 2). Genes 
for proteins in each step of the core pathway (based on 
KEGG map04068) were identified in all of our study 
species, including the hydroid, two insects, a nematode, 
three molluscs, an echinoderm and a hemichordate, as 
well as a urochordate, three amphioxus species, and four 
vertebrates: gar, chicken, mouse, and human (Fig. 3). This 
shows the remarkable conservation of this pathway in 
animals and its likely origin in the metazoan ancestor.

We also validated amphioxus pathway components and 
detected transcripts for amphioxus orthologues of IGF, 
IGFR, IRS, PDPK, Akt, and FOXO in our muscle tran-
scriptome (Additional file 3), though only FOXO was dif-
ferentially expressed. Though expression of amphioxus 
Pi3K complex component genes were not detected, this 

could be due to their permanent presence in muscle cells 
that does not change in response to nutrient availabil-
ity. Furthermore, the lack of any significant differential 
expression of genes for most components of the pathway 
is expected, since their response to nutrient availability is 
primarily via activation or inactivation by processes such 
as phosphorylation, not levels of expression (see Intro-
duction). Though the functions of these amphioxus pro-
teins have yet to be determined, our results suggest this 
pathway is conserved in amphioxus and our identifica-
tions provide a foundation for future work addressing the 
evolution of these genes, particularly in comparison to 
vertebrate models.

It is evident from this reconstruction that for certain 
genes, the 2R WGD had a large impact on the num-
ber of paralogues in vertebrates, while for other genes, 
vertebrates have no extra paralogues, and some genes 
expanded independently in different lineages. The most 
marked example of expansions in invertebrates occurs 
amongst the insulin and insulin-like growth factors, 
where several lineages have multiple clusters of ILPs that 
likely originated via serial tandem duplications. These 
genes may have been retained in duplicate because of 
subfunctionalisation, as the eight dILPs are expressed 
in different contexts [  154. ], but for a gene like insulin, 
it may instead have been advantageous to have multi-
ple paralogues to increase gene production. If multiple 
paralogues have subfunctionalised in invertebrates, for 
instance to be expressed in different tissues or at different 
stages of growth, these signals are all received by a single 
receptor (except Drosophila ILPs7 and 8, which activate a 
separate leucine-rich repeat G-protein coupled receptor, 
similarly to vertebrate relaxins, in the larger insulin-like 
gene superfamily [  155. ]). In contrast, the diversifica-
tion of the vertebrate insulin/IGF family corresponds to 
an equal increase in the number of receptors, presum-
ably because IGF1 and IGF2, as well as INSR and IGF1R 
arose simultaneously due to the 2R WGD. The vertebrate 
IGF2R is a cation-independent mannose-6-phosphate 
receptor, paralogous to the cation-dependent M6PR, 
and orthologous to CI-M6PR in invertebrates, which 
does not bind invertebrate ILPs or vertebrate insulin, and 
is not homologous to the INSR/IGF1R genes [13, 35]. 

(See figure on next page.)
Fig. 2  Schematic of the IGF/AKT/FOXO pathway in fruitfly (A), amphioxus (B), and mammals (C), and expression of FOXO-regulated genes in 
amphioxus (E). Insulin/IGF bind to their receptors, and IRS recruits Pi3K class I or III complexes to the membrane. Pi3K converts PIP2 to PIP3, which 
activates PDK, which phosphorylates AKT, which phosphorylates FOXO, inactivating it by preventing its entry to the nucleus. Without insulin, FOXO 
is not phosphorylated, and it can activate its target genes, including for example, Atrogin-1 (ULK family in chordates). D Key to gene names for 
protein subunits of Pi3K complex in mammals. E Proportion of overall normalised (by variance stabilisation in DESeq2) number of reads detected in 
each experimental condition for genes regulated by FOXO involved in autophagy [136]. Statistically significant differences in expression (p < 0.05, 
DESeq2 DGE analysis) are denoted by asterisks and brackets. Total number of reads are FOXO: 17,117; TRIM55: 297,158; LGMN: 71,123; PINK1: 226,008; 
MAP1LC3a: 5612; MAP1LC3c: 1049; ULK2: 25,482; FBXO30: 3212. Gene names reflect BLAST annotation and may not represent direct orthology. BL– 
numbers are B. lanceolatum gene model IDs. Error bars are the standard deviation of the mean across the four samples in each condition
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IGF2R (CI-M6PR) contains 15 repeats of a domain that 
CD-M6PR contains only one of, and it is these additional 
domains that confer binding to IGF2 [35]. Still unclear is 

the relationship of the two amphioxus and tunicate IGFs 
and the two receptors, as it seems that while invertebrate 
IGF2R orthologues, CI-M6PRs (called lerp in fruit fly) 
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are present, they do not bind any of the invertebrate ILPs 
[42].

Also notable is the genomic location of the insulin 
family genes. As already noted, the invertebrate insulin 
paralogues tend to sit in clusters; five of the eight fruit fly 
ILPs are found clustered on chromosome 3 L, and two of 
the remaining three lie adjacent on the X chromosome 
(Fig. 3). The 40 nematode ILPs are likewise found in sev-
eral clusters (Fig. 3 insert). Also, the two INS/IGF genes 
in the octopus, urchin, and in amphioxus are situated 
in tandem, potentially orthologous to the cluster of INS 
and IGF2 in vertebrates (Fig. 3). The phylogeny, however, 
suggests that the two-gene clusters in octopus, amphi-
oxus, urchin, the three linked genes in the tunicate, and 
the IGF2-INS cluster in vertebrates all arose separately, 
as these genes are separated by speciation nodes and 
the vertebrate clade is monophyletic (Additional file  1). 
Alternatively, this topology could also have arisen via 
divergent selection on these genes within each species, 
resulting in sequences that are more similar between par-
alogues than orthologues, despite the duplication predat-
ing the speciation of these groups.

Codiversification of the Pi3K complex subunits
How function relates to paralogue retention is exempli-
fied by the Pi3K complex. This kinase has roles in numer-
ous cell processes, and with its different binding partners 
determined by the makeup of its subunits, it has an 
immensely complex set of roles [  156. –  158. ]. There 
are three classes of Pi3K (Fig. 2D), which phosphorylate 

different phosphatidylinositols, distinguishing their roles 
in different signalling pathways [  159. ]. The catalytic 
domains share homology within and between classes, and 
show that animals have three gene types, corresponding 
to the three classes of kinase (Fig. 4). While the class III 
catalytic domain remained in the single copy in verte-
brates (Fig.  4c), there are three vertebrate paralogues of 
the class II catalytic domain corresponding to one inver-
tebrate gene (Fig. 4b), and four vertebrate paralogues of 
the class I catalytic domain orthologous to two inverte-
brate genes (Fig.  4a). The 2R WGD likely generated the 
class II paralogues, as the vertebrate clade is monophyl-
etic (Fig. 4c; vertebrate clade support 100/1/95). For the 
class I vertebrate paralogues, one invertebrate gene (lost 
in insects) is orthologous to the PIK3CA gene in verte-
brates, while the other (lost in hydroid and nematode) is 
orthologous to the vertebrate PIK3CB and PIK3CD genes 
(Fig. 4a; PIK3CA clade support 99/1/−; PIK3CB/D clade 
support 100/1/92).

There is little similarity between the three classes of 
regulatory subunits. The class IA regulatory subunit 
has three vertebrate paralogues, corresponding to a sin-
gle invertebrate gene present in all species in the study 
(Fig.  5a; vertebrate clade support 94/1/100). There is 
also an Olfactores-specific gain of a gene type, the class 
IB subunit, PIK3R5/6, with a single orthologue in the 
tunicate and two linked genes in vertebrates (Fig.  5c; 
Fig.  3). This corresponds to the Olfactores-specific gain 
of its partner, PIK3CG (Fig.  4a; PIK3CG clade support 
100/1/97; Fig.  3), suggesting these two proteins arose 

Fig. 3  Schematic of genes for proteins in the IGF/AKT/ FOXO pathway in the 17 species included in this study. Clustered adjacent genes are joined 
with black lines, while genes linked but over longer distances are joined with a jagged line. Question mark denotes uncertainty if the gene is lost/
gained. The B. belcheri IRS2 could not be located, but may not have been sequenced. The 40 C. elegans ILPs are shown in the red box to the right
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together, and the PIK3R5/6 precursor duplicated in tan-
dem after the tunicates diverged. Class II does not have 
a regulatory subunit, while class III has a single gene in 
both invertebrates and vertebrates, PIK3R4 (Fig. 5b), sim-
ilar to the single copy class III catalytic subunit (Fig. 4b).

The consistent patterns of gene numbers between 
the catalytic and regulatory subunits within each 
class suggests the codiversification of these proteins 
and is presumably linked to their conjoined function 

(Fig.  2D). For these genes, the mode of subfunction-
alisation appears to have been sequence-based rather 
than in the regulatory regions, especially as these 
genes are generally ubiquitously expressed. While 
some subunits were not retained in duplicate fol-
lowing 2R, e.g. the class III partner genes PIK3C3 
and PIK3R4, the class I complex diversified, result-
ing in multiple vertebrate paralogues of the cata-
lytic (PIK3CB and PIK3CD) and regulatory (PIK3R1, 
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PIK3R2, and PIK3R3) subunits with an origin in the 2R 
WGD. The 2R origin of these paralogues is supported 
by synteny as well, as PIK3CB and PIK3CD are in dis-
tinct regions of the vertebrate genomes correspond-
ing to the same ancestral chordate linkage group, P 
[111]. There is a similar pattern with PIK3R1, PIK3R2, 
and PIK3R3 in group L, as well as the three class II 
catalytic domains PIK3C2A, PIK3C2B, PIK3C2G and 
group O (Additional file  3). Further strengthening 
the evidence for the role of 2R in the origin of these 

paralogues is that the amphioxus pro-orthologues of 
these genes reside in the same linkage groups, with 
PIK3CB/D in P, PIK3R1/2/3 in L, and PIK3C2 in O 
(Additional file 3).

The codiversification of these paralogues after the 
2R WGD, where genes for interacting proteins were 
retained together, is consistent with retention by dos-
age-compensation, which then allows time for func-
tional divergence to occur between paralogues [  160. 
,   161. ]. Furthermore, the highly conserved nature of 
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the catalytic subunits compared to the divergence of the 
regulatory subunits may be consistent with the lynchpin 
hypothesis, where pathways gain complexity as small 
changes to redundant protein sequences can change 
paralogous proteins’ interactors or substrates, and 
quickly increase complexity [  162. ]. In this case, the 
catalytic domain is constrained to an enzymatic func-
tion (PIP phosphorylation), while the regulatory domain 
is relatively free to diverge and evolve different domains, 
allowing complexing with different binding partners 
in different contexts. It would be of interest to deter-
mine the reasons certain Pi3Ks returned to the single 
copy while others were retained in duplicate, especially 
as these kinases constitute central positions in myriad 
signalling pathways in nearly every cell. To address this 
question, we suggest future studies use a suitable predu-
plicate outgroup as a proxy for the ancestral state such 
as amphioxus, and our identification of the amphioxus 
orthologues may provide a good starting point for this 
future work.

Evolution of FOXO transcription factors: the impact of 2R
For the FOXO family, 2R is the primary duplication event 
detected. The phylogeny of these genes shows that each 
invertebrate gene is orthologous to the four vertebrate 
paralogues (Fig.  6B, vertebrate clade support: 99/1/97), 
and these four vertebrate paralogues sit in four distinct 
paralogous regions in the vertebrate genomes (Fig.  6A). 
The expected “one-to-four” orthology between a single 
amphioxus FOXO locus, located on chromosome 9 in the 
new B. floridae genome assembly [111], and four verte-
brate loci in distinct chromosomal locations is consist-
ent with the origin of the four FOXO paralogues in the 
2R WGD. While many paralogues were lost across these 
loci, the resultant pattern illustrates the four-fold paral-
ogy of vertebrate genomes [23]. The human FOXO3B is 
not shared with any other vertebrates here, and groups 
with the human FOXO3 in the phylogeny, suggesting it is 
a recent, human-specific duplication (N.B. its name does 
not represent orthology to teleost fish FOXO3b genes 
that arose in the teleost-specific 3R WGD). As such, it 
represents an intriguing human-specific elaboration of 
this widely conserved pathway.

Regulatory genes, especially transcription factors 
with complex regulatory regions themselves tend to 
be overrepresented in paralogues retained in duplicate 
following WGDs. This is because of their propensity 
to subfunctionalise via the Duplication-Degeneration-
Complementation process, where duplicated genes 
accrue degenerate mutations in their regulatory regions, 
partitioning their expression so that each is expressed 
at a subset of the ancestral genes’ expression, and thus 
both are required to fulfil that ancestral role [33]. For 

the FOXO genes, there is some evidence of subfunction-
alisation amongst the vertebrate paralogues, as they are 
expressed differentially [  163. ,   164. ]. While FOXO1 
knockout mutants are lethal, FOXO4 mutants have 
no phenotype and FOXO3 mutants show reproduc-
tive abnormalities [  165. ], while FOXO6 is expressed 
in the developing brain and liver [  166. ]. FOXO1 is 
required for myoblast fusion in development [  167. ], 
but FOXO3 is involved in muscle nutritional response 
and mitophagy [136]. Further work on FOXO in amphi-
oxus could begin to characterise the ancestral function 
and provide a point of comparison to understand the 
subfunctionalisation of vertebrate FOXO paralogues. 
Understanding how these genes evolved will also help 
understand the impact of 2R WGD on the evolution of 
vertebrate complexity.

Conclusions
All along this highly conserved pathway, it is clear that 
duplication has led to increasing complexity, espe-
cially in the case of the vertebrates. The 2R WGD cre-
ated redundant genes duplicated in the context of their 
entire regulatory region, important for genes with com-
plex regulation like FOXO transcription factors, as well 
as simultaneous duplication of entire networks, impor-
tant for protein complexes with multiple subunits like 
Pi3K. Comparisons to amphioxus show that orthologues 
of many of the vertebrate genes involved in the more 
complex muscle building processes, including myo-
blast fusion, were present in the chordate ancestor. We 
suggest that perhaps it was the 2R WGD that allowed 
this process to fully develop into vertebrate myogen-
esis, possibly alongside key genetic innovations such as 
Myomaker and Myomixer, which are the only Olfac-
tores-specific myogenic genes that are now distinguish-
able following our analysis of myoblast fusion candidate 
genes in the amphioxus muscle transcriptome data. 
Our study suggests a convergent rather than ortholo-
gous origin of multinucleate myocytes in flies and ver-
tebrates, since amphioxus possesses a vertebrate-like set 
of myoblast fusion genes, yet myoblast fusion has not 
been detected in amphioxus. We also detected a com-
plete INS/Akt/FOXO pathway in amphioxus and show 
that it is involved in the response to nutritional limita-
tion similar to other well-studied invertebrate and ver-
tebrate models. Thus, amphioxus may be a useful model 
organism to understand the evolution of vertebrate 
muscle physiology and disease. Here, our use of amphi-
oxus as a more appropriate and phylogenetically better-
placed pre-duplicate comparison to the vertebrates is 
key to assessing the impact of 2R WGD and detecting 
vertebrate-specific novelties of muscle evolution and 
development.
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Materials and methods
Amphioxus transcriptome
European amphioxus (B. lanceolatum) were obtained 
from the Plymouth Marine Laboratory (Plymouth, UK) 
and maintained in the aquarium facilities of the Scottish 
Oceans Institute (SOI) in St Andrews (Scotland, UK). 
Amphioxus were fed with a diet of the red algae Rhino-
monas reticulata, visible in the amphioxus gut, and sup-
plemented with MarineSnow (Two Little Fishies, Inc), 
fasted for six weeks, then refed before sampling at the 

eighth week (Fig.  7). To generate the de novo transcrip-
tome, 21 amphioxus muscle RNA samples were pooled, 
from 7 fed, 8 fasted, and 6 refed animals. Total RNA 
was extracted from dissected amphioxus muscle and 
immersed in TRIsure, then homogenised. After cen-
trifugation, the aqueous phase was isolated, and RNA 
was precipitated with isopropanol, recentrifuged, and 
isolated in the pellet. Samples were sent for Roche 454 
pyrosequencing at TGAC (The Genome Analysis Centre, 
which has now been renamed to the Earlham Institute). 
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Fig. 6  A Synteny of the FOXO locus in amphioxus (B), chicken (G), human (H) and spotted gar (L). Genes are represented by boxes coloured and 
numbered by each 2R WGD family on chromosomes labelled with white text in black boxes. Each gene family has a single gene on amphioxus 
chromosome 9, and up to four paralogues in vertebrate genomes, e.g., the FOXO ohnologues on chicken chromosome 3 and human chromosome 
6 are both adjacent to an ohnologue from the SESN (10) family. Distances are not to scale, and gene order does not exclude intervening genes. 
Detailed locations are listed in the supplementary information. B Maximum likelihood phylogeny of metazoan FOXO genes. Support values 
are IQ-TREE bootstrap support (% of 1000 replicates), MrBayes posterior probability, and MEGA Neighbor-Joining bootstrap support (% of 1000 
replicates). Dashes denote missing support values for branches not present in that tree-building method. Alignment was made using MAFFT 
(supplementary information)
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Reads were assembled with Newbler v.2.6 and annotated 
with BLASTx searches against the nr NCBI database in 
BLAST2GO with an e-value cutoff of 10−3 to create the 
de novo amphioxus muscle transcriptome. Statistics of 
the assembly are presented in Additional file 1.

Feeding‑fasting‑refeeding experiment
For the differential gene expression experiment, twelve 
amphioxus were kept at ambient temperature over the 
course of two eight-week trials. Each trial consisted of 
a feeding period of a week, followed by a 43-day fast-
ing period allowing amphioxus to clear their guts com-
pletely, and a one-week refeeding period (Fig. 7). At each 
time point in each trial, two amphioxus were sampled, 
their muscles dissected, and RNA extracted. These sam-
ples were sent for paired-end Illumina Hiseq2000 flow 
cell sequencing at TGAC. Illumina reads were mapped 
against the 454 de novo transcriptome with SOAP [138] 
and reads were quantified with RSEM [64]. Differential 
gene expression between the three experimental con-
ditions was compared with DESeq2 [67] with a p-value 
alpha of 0.1.

Differential gene expression and functional annotation
Differentially expressed isotigs (n = 795) were function-
ally annotated by mapping against the B. lanceolatum 
genome assembly [71]. Mapping was compared to B. lan-
ceolatum gene models with GFFCompare [95] for a list 
of 476 B. lanceolatum genes from 664 isotigs with good 
mapping hits corresponding to a B. lanceolatum gene 
model. These were BLAST searched against the human 
proteome (UniProt UP000005640) to find human ortho-
logues. A list of human protein IDs for genes whose 
amphioxus orthologues were differentially expressed in 
each treatment comparison was submitted to WebGestalt 
[66] for functional annotation and overrepresentation 
analysis. For each comparison, up- and down- regulated 
genes were compared to the GO biological process, GO 
molecular function, GO cellular component, and KEGG 

pathway databases against the human genome reference 
set. The top 10 gene sets were retrieved, and can be found 
in Additional file 1.

INS/Akt/FOXO pathway bioinformatics
The canonical INS/Akt/FOXO pathway was determined 
from the KEGG pathway (map04068; FoxO signalling 
pathway) and a survey of the literature (e.g., [3, 72, 123]). 
Vertebrate protein sequences were taken from Ensembl 
[143], and most invertebrate sequences were taken from 
Ensembl Metazoa or UniProt [125], and checked against 
specific databases including EchinoBase [60], ANISEED 
[14], BeetleBase [133], FlyBase [126], and WormBase 
[43]. All sequences were checked via BLAST against 
the genome assemblies available, and their CDS loca-
tions recorded. Amphioxus sequences were taken from 
NCBI. Sequences and respective genomic locations can 
be found in Additional file 3. Sequences were aligned in 
Jalview [135] so that gene models for some species could 
be manually curated. Final alignments were made using 
MAFFT [58] with the preset ENS-I and were not manu-
ally curated. Alignments can be found in Additional 
file 4.

Phylogenetics
Alignments were first submitted to the IQ-TREE web 
server [88, 128] for model testing [53] and Maximum 
Likelihood phylogeny building with 1000 ultrafast boot-
strap replicates [45]. Consensus support values on the 
consensus ML tree were used to make the figures, and 
branches were annotated with support values from 
Bayesian Inference and Neighbor Joining. Maximum 
Likelihood phylogenies for PIK3C, PIK3R, and FOXO 
alignments were subsequently made with 1000 real boot-
strap replicates in IQ-TREE which are presented in the 
figures. This model or the closest equivalent was used in 
MEGAX [61] to create the NJ phylogeny. Bayesian phy-
logenies were made using MrBayes v3.2.7 [104] on the 
CIPRES Science Gateway [80]. The model was set to 

Fig. 7  Schematic of the eight-week trial of the amphioxus feeding-fasting-refeeding experiment with three sample timepoints
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mixed, so as to allow switching between models during 
the analysis. It was run for a maximum of 5x108 genera-
tions, printing trees every 5x105 generations and sam-
pling every 5x104 generations, but with a stop rule for 
convergence of the average standard deviation of split 
frequencies = 0.01. MCMC output was analysed in Tracer 
v1.7.1 [101] to determine appropriate burn-in between 
runs, and consensus trees were made with TreeAnnota-
tor (TreeAnnotator) 127. Trees were visualised in FigTree 
v1.4.4 (FigTree)  30. Phylogenies can be found in Addi-
tional file 1.

Synteny
Synteny of the FOXO locus began with the paral-
ogy groups created by Simakov et  al. [111]. Based on 
the genomic location in gar and chicken genomes, the 
ancestral chordate FOXO locus was determined to be in 
chordate linkage group K. This corresponds to previous 
chordate linkage group 17 from Srivastava et al. [117]. 
Locations of human and gar orthologues of chicken 
genes in this group were retrieved with BioMart [112], 
and this list was reduced to include only gene families 
with multiple but no more than five paralogues across 
four FOXO loci and with orthologues on the FOXO-
bearing chromosome in amphioxus, using B. lanceola-
tum gene models mapped to chromosome 9 in the new 
B. floridae chromosome-level assembly [111]. Details of 
synteny can be found in Additional file 3.
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